Moore Property Monitoring Report FINAL Year 3 (2013)

Johnston County, North Carolina

USGS HUC: 03020201

EEP Project ID #725 EEP Project Manager: Jessica Kemp

Submitted to:

NCDENR-Ecosystem Enhancement Program 1652 Mail Service Center Raleigh, North Carolina 27699-1652

Submitted January 2014

Executive Summary

General

The project site is located in the USGS Hydrologic Unit Code 03020201. In 2003, the restoration of the site was initiated by the North Carolina Department of Transportation (NCDOT), and the property owner (Michael Todd Moore) conveyed an 84.2 acre conservation easement in perpetuity to NCDOT in March 2003. NCDOT conducted a Mitigation Feasibility in May 2003, followed by a Mitigation Plan in January 2005.

Upon completion of the Mitigation Plan, the project was transitioned to the North Carolina Ecosystem Enhancement Program (EEP). Construction Plans were prepared by Kimley-Horn and Associates, Inc. (KHA) in March 2009, and Environmental Quality Resources, LLC (EQR) completed construction of the project in July 2011. During this time, in 2010, the property was conveyed from Mr. Moore, to Mr. Blackmon.

The primary goals for the Site were to restore wetland hydrology and an appropriate water table hydroperiod of the floodplain wetland (i.e. elevated water table levels and longer duration of saturation of the upper soil surface during the growing season) through the removal of drainage ditches and field crowns; re-vegetation of species to establish the native wetland, upland, and riparian vegetation communities; provide habitat protection for federally protected species in Swift Creek through the establishment of a permanent conservation easement along the west bank of Swift Creek through the project area; generally improve water quality and flood storage capacity functions within the restoration area by providing longer residence time and filtering for runoff through the wetland area prior to entering Swift Creek; and minimize permanent open water habitat to reduce avian hazards for the adjacent airport. These goals were accomplished through the following objectives:

- Re-graded the Site to remove the field crowns and drainage ditch system.
- Redistributed topsoil for wetland vegetation establishment.
- Planted riparian buffer and wetland vegetation to restore the area back to natural riparian floodplain and wetland communities.

The conservation area for riparian buffer along Swift Creek is 200 feet wide and measures from the top of the stream bank within the project area. The Site also contains two (2) distinct areas with two different primary hydrologic inputs. The eastern area nearest to Swift Creek (WED), is a likely historic remnant of Swift Creek and is now a wetter depression in the floodplain. The primary hydrologic inputs for this area will be backwater affect from Swift Creek and precipitation. The western area (TOM) is located further from Swift Creek along the toe of slope of the floodplain and receives hydrologic inputs from Swift Creek and runoff from the adjacent watershed area west of the Site (approximately 0.2 square miles). The following table lists the different assets included in the Site's restoration.

1

Project Asset Table												
Project Asset Restoration Acreage Mitigation Ratio												
Riparian Wetland	51.5	1:1										
Riparian Buffer Restoration	5.7	1:1										

KHA performed wetland monitoring in the fall of 2013 for this Year 3 Monitoring Report with site visits occurring on April 18, July 31, August 21, November 6, November 8, and November 11. Site monitoring field work included Carolina Vegetation Survey (CVS) level 2 assessment, groundwater well data collection, and visual assessment of the vegetation and wetland restoration components of the project. The following table details the rainfall by month for the site for the 2013 monitoring year.

Rainfall by	Month	for 2013 Mor	nitoring Year	(Year 3)			
Month	Year	Rainfall* (in)	Average Rainfall** (in)	Month	Year	Rainfall* (in)	Average Rainfall** (in)
November	2012	0.71	3.14	May	2013	5.89	3.76
December	2012	4.46	3.15	June	2013	16.33	3.74
January	2013	3.07	4.17	July	2013	14.43	5.04
February	2013	4.12	3.66	August	2013	3.04	4.56
March	2013	1.91	4.23	September	2013	3.54	4.35
April	2013	3.85	3.00	October	2013	0.34	3.14
Total for M	onitorin	g Year $= 57.23$	3 inches				
*Data from	station (CLA2 in Clay	ton, NC (5 mi	. NW of site)			
**Historica	l period	of record rang	ges from 1971-	-2000			

Summary information/data related to the occurrence of items such as encroachment and statistics related to performance of various project and monitoring elements can be found in the table and figures in the report appendices. Narrative background and supporting information is provided in the 2011 As-Built and Baseline Monitoring Report and in the 2008 Restoration Plan documents available on EEP's website (www.nceep.net). All raw data supporting the tables and figures in the appendices is available from EEP upon request.

Hydrology

The restored wetland area was visually assessed and wetland gauge data was downloaded and analyzed as part of the Year 3 monitoring. The downloaded wetland gauge data is shown graphically against local precipitation data in Appendix E for monitoring locations shown in the Current Conditions Plan View (CCPV). As described in the 2008 Restoration Plan, success of the restoration of wetland hydrology will be determined by meeting U.S. Army Corps of Engineers (USACE) minimum criteria and providing water table at or near the surface consistent with frequency and duration of reference wetlands. For year's one (1) through three (3), minimum successful wetland hydrology is defined as less than or equal to 50% deviation in sustained water table levels near the surface compared to the reference wetlands. For year four (4) and beyond until the minimum success criteria is met, successful wetland hydrology is defined as less than or equal to 20% deviation in sustained water table levels near the surface water table levels near the surface water table levels near the surface sufficient is met, successful wetland hydrology is defined as less than or equal to 20% deviation in sustained water table levels near the surface sufficient is met, successful wetland hydrology is defined as less than or equal to 20% deviation in sustained water table levels near the surface sufficient is met, successful wetland hydrology is defined as less than or equal to 20% deviation in sustained water table levels near the surface sufficient is sufficient to the reference wetland hydrology is defined as less than or equal to 20% deviation in sustained water table levels near the surface sufficient is sufficient to the sufficient table levels near the surface sufficient table levels near the sufficient is sufficient to the sufficient table levels near the sufficient table tab

compared to the reference wetlands. The hydroperiod of the reference and site wetlands will be measured using groundwater gauges that record the water table elevation near the ground surface on a daily basis. The following observations were made regarding the hydrologic conditions during the Year 3 Monitoring site visit:

- While 2013 received above average rainfall (57" recorded against an annual average of 46"), the site did not experience any overbank floodwaters from Swift Creek this monitoring year. A significant tropical storm event in June, followed by higher than normal rainfall in July (286% of normal), provided multiple high flow events within Swift Creek which likely provided some flow from both the adjacent roadside ditch, and the outfall ditch as (Appendix B, Photo WP6).
- Ponded water was observed throughout the drainage swales, and within the lower elevations of the site at various times of the year during visual inspections and gauge data download field visits. The surface water that was observed was likely due to recent rainstorm events before the field visits. This indicates that water is remaining on the site for extended periods after significant rainfall events.
- The wetland appears to be continuing towards the design goals. The site was observed at the end of the growing season (beginning of the dormant season) and the site hydrology and vegetation community appeared to be functioning as intended.
- The crest gauge located in the outlet ditch for the wetland recorded at least two bankfull events in Swift Creek in the monitoring year (Appendix B, Photo WP1). It should be noted that the crest gauge was installed so that the bottom of the gauge was at the same elevation as the bankfull indicators located along the outlet ditch. The bankfull event occurring in June overtopped the crest gauge as evidenced by sediment staining on the banks (Appendix B, Photo WP2), so the exact height of the crest is not known.
- Significant beaver activity was observed both within the site and the adjacent area of the outlet ditch at the southern end of the site. The primary culvert outlet from the site was completely impounded by a beaver dam, holding water within the ditch. This may have contributed to the high crest gauge reading previously discussed (Appendix B, Photos WP3 and WP4).
- A US Geological Survey ambient water quality monitoring station is located approximately 6 miles upstream on Swift Creek at Barber Mill Road, in Clayton, NC (USGS 0208773375). During this monitoring year, the peak readings on the gauge on Swift Creek were 12.5' in late spring (6/7/2013) and 8.3' in early fall (9/23/2013). This indicates that while Swift Creek did have high flow events, they were lower than the flows experienced in previous years, and as stated above, peak flow events occurring in Swift Creek this monitoring year were not high enough to flood the site over the existing stream berm along the creek.
- During a site visit conducted on July 10, 2013, NC EEP staff observed a breach in the sand berm adjacent to Swift Creek (WP7 and WP8). Sand was deposited within the site

indicating overwash from Swift Creek, likely a result of the high-flow event recorded by the USGS gauge on June 7, 2013. Subsequent site visits were not able to locate similar breaches in this area, indicating no further overbank flow into the site at this location during the monitoring year.

Per the Natural Resource Conservation Service (NRCS) Johnston County Soil Survey, the growing season in Johnston County is from March 21 until November 16 (241 total days). Eleven of the sixteen groundwater gauges indicate that the wetland is exceeding the minimum success wetland hydrology criteria for the site. The gauges that did not meet minimum success criteria for wetland hydrology are D2, E2, F2, C4 and E4. Gauge F2 experienced a malfunction and did not log groundwater levels through the 2013 growing season. Three of the gauges that did not meet minimum criteria, D2, E2, and E4, are located along the wetland fringe adjacent to upland areas. Hydrology at these locations would be expected to be highly variable, both seasonally and year-to-year depending on rainfall and flood events from Swift Creek. (see Tables 10a and 10b for more detail). Gauge C4 is located on a slight topographic rise between two lower elevation swales in the southwestern quadrant of the site. Based on the microtopography in this area, surface water sheds away from this area, and is not likely to remain ponded at the gauge location following storm events like the lower areas of the site. This is reflected in the hydrology data at gauge C4 by more rapid water table recession after storm events compared to gauges B4 and D4. The gauge recorded a total of 66 days during the growing season with the water table within 12" of the surface, however due to water level fluctuation at this location, 10 days was the longest consecutive period with sustained water tables in the upper 12" and thus C4 does not meet wetland success criteria.

Vegetation

The minimum success criteria has been established by EEP to verify that the re-established wetland and riparian buffer vegetation includes an appropriate species composition for the target wetland community type. In addition, the minimum success criterion includes the density and growth of characteristic forest species. For wetlands, a minimum mean density of 260 woody stems (planted and volunteer stems) per acre must be surviving for five years after initial planting, and an interim success criterion of 320 stem/acre in Year 3. For riparian buffers, a minimum mean density of 320 characteristic trees species (planted stems only) per acre must be surviving for five years after initial planting. These minimum requirements are according to the NCDENR DWQ Administrative Code 15A NCAC 02B.0242 (Neuse Buffer Basin, Mitigation Program for Protection and Maintenance of Existing Riparian Buffers). This site was instituted prior to October 2007 and, therefore, will generate Riparian Buffer Restoration credit within the conservation easement where planted hardwood stem density requirements are met AND there is a minimum of 50' and a maximum of 200' from the top of bank of Swift Creek. Herbaceous vegetation will be assessed visually during the initial assessment for ground cover and target species. Supplemental plantings will be performed as needed to achieve the vegetation success criteria.

During the monitoring process, KHA conducted a CVS Level 2 assessment of sixteen vegetation plots and a visual assessment of the vegetation community. Refer to the Appendices B and C of this report for the collected vegetation data and assessment summary data. The following

observations were made regarding the vegetation condition during the Year 3 Monitoring site visit on November 8 and November 11, 2013:

- Currently only one (VQ-16) of the four riparian vegetation plots (VQ-11, VQ-12, VQ-14, and VQ-16) are meeting the minimum success criteria of 320 planted stems/acre.
- Eight (VQ-1, VQ-2, VQ-4, VQ-5, VQ-6, VQ-10, VQ-13, and VQ-15) of the twelve wetland vegetation plots (VQ-1, VQ-2, VQ-3, VQ-4, VQ-5, VQ-6, VQ-7, VQ-8, VQ-9, VQ-10, VQ-13, and VQ-15) are meeting the minimum success criteria of 320 woody stems/acre.
- Of the seven vegetation plots that are not meeting the minimum success criteria, none are within 50 stems/acre of meeting the 320 stem/acre criteria. From visual observations, the plots that are not meeting the vegetation success criteria are generally dominated by herbaceous vegetation or are typically inundated throughout the year. Many of these plots, and areas around the plots, do include natural propagation of native woody species (i.e., river birch, sycamore, red maple, sweetgum, and loblolly pine).
- Based on the MY3 CVS assessment, the average woody stem count per acre for MY3 within the wetland area of the site is 361 stems/acre, and the total average for the riparian area of the site is 150 stems/acre.
- NC EEP contracted to have the supplemental planting of 1,220 woody stems conducted within seven targeted zones totaling 6.8 acres of the site on November 20, 2013. The planting was conducted after the conclusion of MY3 monitoring work, but the supplemental stems were marked with blue paint and they will be assessed as part of the MY4 data collection.
- As shown on the Current Conditions Plan View, cattails (*Typha latifolia*) have continued to establish in the vicinity of the wetland seep, the constructed wetland swale, and in the historic agricultural ditch location. Since MY2, the cattail populations have begun to merge into one large population.
- Lespedeza (*Lespedeza cantata*) remains established in the southwestern portion of the site, between vegetation plots 8 and 9.
- The herbaceous vegetation has vigorously propagated throughout the project site. Upon inspection, it appeared that most of the herbaceous vegetation was planted as part of the temporary or permanent seed mix, with the exception of the invasive or unfavorable species previously discussed.
- Dog fennel (*Eupatorium capillifolium*) is established throughout the upland areas of the site, and is propagating to the wetland areas, however due to the significant flood event recorded in June, the dog fennel has died back and was not found within the drainage swale on the west side of the upland area. Vegetation plot 2 however, remains dominated by dog fennel.
- Recent unauthorized activity on the site has resulted in the mechanized clearing (bush hogging) of a wildlife corridor from the access driveway on Swift Creek Road, along the perimeter of the site to the east, down to the southeastern corner of the site where a deer stand was erected. The clearing activities impacted vegetation plot 12 (VQ-12), of which

5

approximately half of the plot has been mowed, cleared, and seeded, destroying both the planted and naturally occurring vegetation within the plot. The rebar pins at both the origin (0,0) and the southeastern corner (0,10) have been removed or destroyed. These pins will be reset at the beginning of monitoring year 4. Due to the clearing and lack of locatable rebar pins, VQ-12 was not surveyed this year. NC EEP has been in coordination with the land manager to remove the hunting structures and prevent further clearing activities within the site. This area will be observed throughout the spring of MY4 to determine if the woody stems will re-sprout or if supplemental planting will be required to restore this riparian area. Any supplemental planting would be conducted during the dormant season of MY4.

Soils

Hydric soils were present throughout the site during the site assessment. There are indicators of ponding and saturation at the surface and infiltration rates are low for several days after rain events as referenced in multiple groundwater monitoring wells.

References

Environmental Laboratory. 1987. Corps of Engineers Wetlands Delineation Manual. Technical Report Y-87-1. United States Army Engineer Waterways Experiment Station, Vicksburg, Mississippi.

LeGrand, H.E. and S.P. Hall.

Lee, Michael T., Peet, Robert K., Roberts, Steven D., Wentworth, Thomas R. 2006. CVS-EEP Protocol for Recording Vegetation, All Levels of Sampling, Version 4.0.

SCO Station CLA2 – DAQ Clayton Profiler Daily Precipitation Data http://www.nc-climate.ncsu.edu/cronos/?station=CLA2

WETS Station CLAYTON 3 W, NC1820 Average Monthly Precipitation Data http://www.wcc.nrcs.usda.gov/climate/wets_doc.html

TABLE OF CONTENTS

EXECUTIVE SUMMARY

APPENDIX A – PROJECT VICINITY AND BACKGROUND TABLES

- FIGURE 1 PROJECT SETTING
- TABLE 1
 PROJECT COMPONENTS AND SUMMATIONS
- TABLE 2
 PROJECT ACTIVITY AND REPORTING HISTORY
- TABLE 3PROJECT CONTACTS TABLE
- TABLE 4PROJECT ATTRIBUTE TABLE

APPENDIX B – VISUAL ASSESSMENT DATA

- FIGURE 2 CURRENT CONDITIONS PLAN VIEW
- FIGURE 3 REFERENCE GAUGE LOCATIONS
- TABLE 6
 VEGETATION CONDITION ASSESSMENT

WETLAND PHOTO PAGES

VEGETATION PHOTO PAGES

APPENDIX C – VEGETATION PLOT DATA

TABLE 7	VEGETATION PLOT CRITERIA ATTAINMENT
TABLE 8	CVS VEGETATION PLOT METADATA
TABLE 9	PLANTED AND TOTAL STEM COUNTS (SPECIES BY PLOT WITH ANNUAL
	MEANS)

APPENDIX D – HYDROLOGIC DATA

- TABLE 12VERIFICATION OF BANKFULL EVENTS
- TABLE 13A
 REFERENCE GROUNDWATER WELL SUMMARY
- TABLE 13B
 RESTORATION GROUNDWATER WELL SUMMARY

GROUNDWATER DATA ANALYSIS

APPENDIX A PROJECT VICINITY MAP AND BACKGROUND TABLES

Title	Vicinit	у Мар										
Prepare	Prepared For: Project Moore Property Monitoring (725) 2013 - Year 3 Johnston County, North Carolina Johnston County, North Carolina											
Enhance	tement	DateKHA Project NumberFigure05/07/20130117950331										

[Table	e 1. Project	Components a	nd Mitigation	Credits		
					Moore Property	/725			
					Mitigation Cre	dits			
	Str	eam	Ripariar	n Wetland	Non-riparia	n Wetland	Neuse Riparian Buffer	Nitrogen Nutrient Offset	Phosphorous Nutrient Offset
Туре	R	RE	R	RE	R	RE			
Totals			51.5	0			248,292		
					Project Compor	nents			
Project Compon ID	ent -or- Reach	Stationing	Location	Existing F	ootage/Acreage	Approach (Pl, PII, etc.)	Restoration or- Restoration Equivalent	Restoration Footage or Acreage	Mitigation Ratio
RP	N						Restoration	5.7	1:1
WE	D						Restoration	10.4	1:1
TOM	I-A						Restoration	39.8	1:1
TOM	I-B						Restoration	1.3	1:1
				(Component Sum	mation			
Restoratio	on Level	Stream (lir	near feet)	Riparian	Wetland (acres)	Non-riparia (acr	n Wetland es)	Buffer (square feet)	Upland (acres)
				Riverine	Non-Riverine				
Restoration				51.5	0			248,292	
Enhancement									
Enhancement I									
Enhancement II									
Creation									
Preservation									
High Quality Pres	ervation								

Table 2. Project Activity and Reporting History Moore Property/725											
Activity or Deliverable	Data Collection Complete	Completion or Delivery									
Restoration Plan	NA	March 2008									
Final Design – Construction Plans	NA	May 2009									
Containerized, bare root and B&B plantings	NA	January 2011									
Construction	NA	July 2011									
As-Built & Baseline Monitoring Report	January 2011	July 2011									
Monitoring Year 1	November 2011	January 2012									
Monitoring Year 2	October 2012	February 2013									
Monitoring Year 3	November 2012	December 2013									

- Bolded items are examples of those items that are not standard, but may come up and should be included

- Non-bolded items represent events that are standard components over the course of a typical project.

- The above are obviously not the extent of potential relevant project activities, but are just provided as example as part of this exhibit.

	Table 3. Project Contacts Table Moore Property/725
Designer	Kimley-Horn and Associates, Inc.
	3001 Weston Parkway Cary, NC 27513
Primary project design POC	Daren Pait (757) 355-6677
Construction Contractor	Environmental Quality Resources, LLC
	1405 Benson Ct Arbutus, MD 21227
Construction contractor POC	John Talley (443) 304-3310
Survey Contractor	Turner Land Surveying, PLLC
	3201 Glenridge Dr Raleigh, NC 27604
Survey contractor POC	David Turner (919) 875-1378
Planting Contractor	Natives, Inc.
	550 E. Westinghouse Blvd Charlotte, NC 28273
Planting contractor POC	Gregg Antemann (704) 527-1177
Seeding Contractor	Natives, Inc.
	550 E. Westinghouse Blvd Charlotte, NC 28273
Contractor point of contact	Gregg Antemann (704) 527-1177
Seed Mix Sources	Natives, Inc.
	Gregg Antemann (704) 527-1177
Nursery Stock Suppliers	Natives, Inc.
	Gregg Antemann (704) 527-1177
Monitoring Performers	Kimley-Horn and Associates, Inc.
	3001 Weston Parkway Cary, NC 27513
Stream Monitoring POC	N/A
Vegetation Monitoring POC	Jason Hartshorn (919) 678-4155
Wetland Monitoring POC	Chad Evenhouse (919) 677-2121

Table 4. Project Attribute Table Macro Property/725													
Moore F	Property/72	25											
Project County		J	ohnston										
Physiographic Region		Coa	astal Plain										
Ecoregion		Rolling	Coastal Plai	n									
Project River Basin			Neuse										
USGS HUC for Project (14 digit)		3020	201110070										
NCDWQ Sub-basin for Project		0	3-04-02										
Within extent of EEP Watershed Plan?	No												
WRC Hab Class (Warm, Cool, Cold)			Warm										
% of project easement fenced or demarcated			100										
Beaver activity observed during design phase?			No										
Restoration Com	ponent Attri	ibute Table											
				Swift									
	RPN	WED	TOM	Creek *									
Drainage area	N/A	0.03 sq. mi.	0.2 sq. mi.	145.2 sq. mi.									
Stream order	N/A	N/A	N/A	4th									
Restored length (feet)	N/A	N/A	N/A	N/A									
Perennial or Intermittent	N/A	N/A	N/A	Perennial									
Watershed type (Rural, Urban, Developing etc.)		Rural	Rural	Developing									
Watershed LULC Distribution (e.g.)													
Residential		2%	2%	20%									
Ag-Row Crop		69%	69%	40%									
Ag-Livestock		0%	0%	0%									
Forested		29%	29%	40%									
Etc.		0%	0%	0%									
Watershed impervious cover (%)		0%	0%	15%									
NCDWQ AU/Index number	N/A	N/A	N/A	27-43-(8)									
NCDWQ classification	N/A	N/A	N/A	C; Sw; NSW									
303d listed?	N/A	N/A	N/A	No									
Upstream of a 303d listed segment?	N/A	N/A	N/A	Yes									
Reasons for 303d listing or stressor	N/A	N/A	N/A	WS-III; NSW; CA									
Total acreage of easement	84.2	84.2	84.2	N/A									
Total vegetated acreage within the easement	84.2	84.2	84.2	N/A									
I otal planted acreage as part of the restoration	5.7	10.4	41.1	N/A									
Rosgen classification of pre-existing	N/A	N/A	N/A	N/A									
Rosgen classification of As-built	N/A	N/A	N/A	N/A									
Valley type	N/A	N/A	N/A	N/A									
	N/A	N/A	N/A	N/A									
Valley side slope range (e.g. 2-3.%)	N/A	N/A	N/A	N/A									
Valley toe slope range (e.g. 2-3.%)	N/A	N/A	N/A	N/A									
	N/A	N/A	N/A	N/A									
I rout waters designation	N/A	N/A	N/A	N0									
Species of concern, endangered etc.? (Y/N)			INO	Yes									
	Altavista			IN/A									
Series	AaA	VVt	10 60 inches	IN/A									
		53 INCRES		IN/A									
Clay%	0.24		0.0	IN/A									
<u>к</u> т	0.24	U.24	U.Z	IN/A									
	5	5	5	IN/A									

Use N/A for items that may not apply. Use "-" for items that are unavailable and "U" for items that are unknown *There is no restoration of Swift Creek involved with this project

APPENDIX B VISUAL ASSESSMENT DATA

LEGENDS AND SYMBOLS

Moore Property Site Assessment Report (725) 2013 - Year 3

(TOI	MY			My LIDIE			
	UAL		E States		Refere	ence Gage Lo	ocations
110))			Dra	Gage ID	Latitude	Longitude
101					REF-B	35.5336	-78.390297
[]]]	~()	11 8/	1 12 - 0		REF-C	35.536499	-78.396301
1/11	CUN	1)1 16			REF-D	35.536499	-78.396202
	00				REF-E	35.5364	-78.398399
12/25	/	14 11			REF-F	35.536499	-78.398399
6118					1	16 5 522	A Contract
50				And as III			A States
	Constanting the second						
Task s	UPLAN	Partition	and the second second		1 and the		
	REF	C	REF-D				
A						and set of	
REF-F	REF-E		1111	11 11			
	Let start			in the second			and Value
							Participant Co.
	Warren &	and the second		3			
e partir a la	16						TELES A
				R	EF-B		
		Not				•	
1 And I					A State		and the second
10		1.5.10				Si rota	State And
					San Partie		a carta
States and		aler a		rthe state of the second of	- tera		A River
	in a start	and the state	1		18 J. 18 1	新学生》(201
		St. B. Stand	Sel file	Constant and the second	File Els		
	The A		Alle Weinstein		A CONTRACT	10 9 0	
- 10			and the			See and	
Lege	end		Left.		Velte	at off	1000 10 10 10 10 10 10 10 10 10 10 10 10
♦	Reference	ce Gauge L	Locations	19.7.1 Mar	100		and the state
	Site Bou	ndarv			0 2	250 500 Fee	et 🔥
			- 100	N. Comment		+	W E
	Referenc	ce wetland	is	14	1 " =	= 500 '	V S
	and Becali		and and have				
Title	Referen	ce Gauge	e Locations (20	012 NAIP Aerial)			
Prenared	For [.]		Moore Proper	ty Monitoring (725) 2	2013 - Voo	r 3	
		Project	Johnston Cou	ntv. North Carolina	.013 - Tea	I J	
Enhancen	em	12/	Date /06/2013	KHA Project Numl 011795033	ber	Figur 3	e
PROG	GRAM	12/		011700000		5	

APPENDIX C VEGETATION PLOT DATA

				Table 7. Vegetation F Moore Pr	Plot Criteria roperty/725	a Attainment					
		MY1		MY2		MY3		MY4		MY5	
Vegetation Plot ID	Vegetation Community	Vegetation Survival Threshold (320 stems/acre) Met?	Tract Mean	Vegetation Survival Threshold (320 stems/acre) Met?	Tract Mean	Vegetation Survival Threshold Met?	Tract Mean	Vegetation Survival Threshold Met?		Vegetation Survival Threshold Met?	Tract Mean
VQ11		N		N		N					
VQ12	Riparian	Y	50%	Y	50%	Not Surveyed	25%				
VQ14 VQ16		N		N V		N					
VQ10 VQ1		N		N		Y					
VQ2		N		N		Y					
VQ3		Ν		Ν		Ν					
VQ4		Y		Y		Y					
VQ5		Y		Y		Y					
VQ6	Wetland	Y	67%	Y	42%	Y N	67%				
VQ7		Y V		N		N					
VQ8 V/09		N		N		N					
VQ10		Y Y		N		Y					1
VQ13		Ŷ		Y		Ŷ			1		1
VQ15		Y	1	Ν	1	Y			1		1

Table 8. CVS Vegetation Plot Metadata												
	Moore Property/725											
Report Prepared By	Jason Hartshorn											
Date Prepared	11/27/2013 15:22											
database name	Moore Property_cvs-eep-entrytool-v2.3.1.mdb											
database location	K:\RAL_Environmental\011795 Moore Property Monitoring\Vegetation Data											
computer name	DD83305											
file size	53,552 KB											
DESCRIPTION OF WORKSHEETS IN TH	Description of database file, the report worksheets, and a summary of project(c) and											
Metadata	project data											
Metauata	Fach project is listed with its PLANTED stams per acre, for each year. This excludes											
Proj. planted	live stakes											
r roj, planteu	Each project is listed with its TOTAL stems per acre for each year. This includes live											
Proi, total stems	stakes, all planted stems, and all natural/volunteer stems.											
	List of plots surveyed with location and summary data (live stems, dead stems, missing,											
Plots	etc.).											
Vigor	Frequency distribution of vigor classes for stems for all plots.											
Vigor by Spp	Frequency distribution of vigor classes listed by species.											
	List of most frequent damage classes with number of occurrences and percent of total											
Damage	stems impacted by each.											
Damage by Spp	Damage values tallied by type for each species.											
Damage by Plot	Damage values tallied by type for each plot.											
0,1	A matrix of the count of PLANTED living stems of each species for each plot; dead and											
Planted Stems by Plot and Spp	missing stems are excluded.											
PROJECT SUMMARY												
Project Code	725											
project Name	Moore Property											
Description	Wetland Restoration											
River Basin	Neuse											
length(ft)	N/A											
stream-to-edge width (ft)	N/A											
area (sq m)	341,718 (0.13 square miles)											
Required Plots (calculated)	30											
Sampled Plots	16*											

* As approved by EEP

For projects using CVS, this table will be produced directly to the performer. For projects not using CVS this spreadsheet can be used/built upon to provide the desired format

Table 9 Planted and Total Stem Counts (Species by Plot with Annual Means)

					Current Plot Data (MY3 2013)																		Annual Means																				
		Species	000-01	-0001		000-01-0002		000-01-0003		000-01-0004		000-01-0005	000-01-00	006	000-01-00	07	00	00-01-0008		000-01-000	99	000-03	1-0010	(000-01-0011		000-01-0012	000-01-0013		000-01-0014	000-01-0	015	000-01-00	016	MY3	3 (2013)		MY2 (2012)		MY1 (2012)	MYG	(2011)
Scientific Name	Common Name	Type	PnoLS P-all	т	PnoLS	P-all T	PnoLS	P-all T	PnoLS	P-all T	PnoLS	P-all T	PnoLS P-all	т	PnoLS P-all	т	PnoLS I	P-all T	PnoLS	P-all	T Pno	DLS P-all	т	PnoLS	P-all T	PnoLS	P-all T	PnoLS P-all T	PnoLS	P-all T	PnoLS P-all	т	PnoLS P-all	т	PnoLS P-a	II T	PnoLS	P-all T	PnoL	S P-all	т	PnoLS P-a	d T
Acer rubrum	red maple	Tree		3	1					1 1																							1 1		i		2		7		3		_
Betula nigra	river birch	Tree	1	1 18	8		2																	1	1	4		5 5	5	4 4 1	5 4	4	4 9	9 1	24	24	67 1	6 16	40	11	11 17	23	23 23
Carpinus caroliniana	American hornbeam	Tree	1	1 1	1															1 1	1 1														2	2	2	2 2	2	8	8 8	17	17 17
Carya aquatica	water hickory	Tree																																					1				
Cercis canadensis	eastern redbud	Tree																								1											1						
Comus amomum	silky dogwood	Shrub																						1	1	1									1	1	1						
Crataegus phaenopyrun	Washington hawthome	e Shrub Tree				2 2	2																			2									2	2	4						-
Diospyros virginiana	common persimmon	Tree	1	1 :	1						-	5 6	7 9	9 9	9 1	1 1	1					2	2	2											19	19	20 3	11 31	41	8	8 8	36	36 36
Fraxinus pennsylvanic	green ash	Tree																																	1		1	3 3	10	6	6 6	6	6 6
Liquidambar styraciflua	sweetgum	Tree		2	2		3																								1				2		8		4				
Nyssa aquatica	water tupelo	Tree																																						2	2 2	2	2 2
Nyssa biflora	swamp tupelo	Tree										1 1	1									1	1	1											2	2	2	4 4	4	38	38 38	41	41 41
Pinus taeda	loblolly pine	Tree			5		2																								4	4	4		4	4	11		5				
Platanus occidentalis	American sycamore	Tree																	5			4	4	5		2				1 1	5				1 5	5	18	3 3	22	9	9 9	11	11 11
Populus deltoides	eastern cottonwood	Tree																																				5 5	17				
Pyrus calleryana	Callery pear	Exotic		1	1		1				1				1	1 1	1				1														3 1	1	8						
Quercus laurifolia	laurel oak	Tree																																						3	3 3	4	4 4
Quercus lyrata	overcup oak	Tree						1 1	1 6	5 6	6															1									2 7	7	10	8 8	9	10	10 10	17	17 17
Quercus michauxii	swamp chestnut oak	Tree						1 1	1 1	1 1	1									2 2	2 2														4	4	4 1	6 16	28	22	22 23	24	24 24
Quercus nigra	water oak	Tree																																	1		1	1 1	3				
Quercus phellos	willow oak	Tree																										5 5	5		2	2	2		1 7	7	8	5 5	6				
Taxodium distichum	bald cypress	Tree										2 2	2																						2	2	2	2 2	2				
Ulmus alata	winged elm	Tree																																					3				
		Stem coun	3	3 2	19	2 2	10	2 2	2 1	7 7	8	9 9	10 9	9 9	9 2	2 2	2 0	0	5	3 3	3 4	7	7	8				10 10	10		10	10 1	0		80	80	107 9	6 96	204	117	117 127	181	181 181
		size (ares	1	<u>.</u>		1		1		1		1	1		1			1		1			1					1			1					12		12		12	2		12
Totals		SIZE (ACRES	2 0.0	2	7	0.02		2 2	2	0.02	2	0.02	2 1	11	1 2		2 0	0.02	-	2 2 2	2 2	2	2	2	N/A		N/A	2 2	2	N/A	0.02	21	2 N/A		12	12	19 1	2 12	17	10	10 11	10	.30
	Ste	tems per ACR	121.4 1	21.4 1173.0	A 80	9 80.9 4	47 80	9 80 9 81	283	3 283.3 3	23 7 364	2 364.2 404	7 364 2 364	2 364 3	2 80.9 80.1	80.9	0.0	0.0	121	4 121.4	161.9	283.3	283.3 30	23.7				404.7 404.7 404	1 7		404.7 40	4 7 404	7		269.8	269.8	360.8 320	0 320.0	680.0	390.0 3	90.0 423.3	603.3	603.3 603.3
		Stem cours																		1				1	1	7	0 0 0	0		5 5 2	0		0	0 2	16	72	52 9	30 34	105	117	117 127	191	191 191
		size (ares																							1 1		1	-		1 1			1	-1 *		4		4		4		101	4
Riparian Buffer Succes	-	cite (ACRES	N			N/A		N/A		N/A		N/A	N/A		N/A			N/A		N/A		N	/Δ		0.02		0.02	N/A		0.02	N/A		0.02		1 .	0.10		0.10		0.1	0		. 10
Criteria		Species cours																						1	1	2	0 0 0			2 2	2		1	1	7 0	a. 10	12 1	2 12	16	10	10 11	10	10 10
1	Ste	tems per ACR																						50.0	50.0 3	350.0 0	0.0 0.0	0	250	250.0 1000.	0		450.0 450.	.0 1300.	0 150.0	720.0	530.0 960.	0 960.0	1950.0 11	170.0 11	70.0 1270.0	1810.0	1810.0 1810.0

Bolded hardwood tree species are counted toward riparian buffer success criteria

APPENDIX D HYDROLOGIC DATA

Table 13a. Reference Groundwater Gauge Summary Moore Property/725												
	Ground Elevation*	2009	2010	MY1 2011	MY2 2012	MY3 2013	MY4 2014	MY5 2015	Notes			
Groundwater Gauge REF-B												
Consecutive days within range ¹	124'	34	29	44	2	35			Floodplain depression, depends on flood events from Swift Creek, which appears to have occurred at least once in 2013. Sediment deposits on vegetation along Swift Creek and tributaries in the vicinity of REF-B indicate overbank flow from Swift Creek.			
% of growing season ²		14.11%	12.03%	18.26%	0.83%	14.52%						
Criteria met ³ ?		Y	Y	Y	Ν	Y						
Groundwater Gauge REF-C	· ۲											
Consecutive days within range	124'	35	30	45	2	33			Very dry after the end of 2012, with the water table reflecting rainfall events through June, peaking into the upper surface on multiple occasions. High rainfall events and/or overbank flow from Swift Creek in June and July anopart to have injundated the wetland. The water table drong heavy?			
% of growing season		14.52%	12.45%	18.67%	0.83%	13.69%	اا					
Criteria met?	l'	Y	Y	Y	N	Y	<u> </u>	<u> </u>	much of the remaining growing season.			
Groundwater Gauge REF-D												
Consecutive days within range	124'	43			22	62			Very dry through the end of 2012. Water table rises into the upper surface in January, peaking above the ground surface in correlation with rainfall events. The water table is drawn down throug			
% of growing season		17.84%			9.13%	25.73%			the growing season, but is inundated during June and July with high rainfall totals and/or overban flow from Swift Creek Water table drops below 12" for the majority of the growing season			
Criteria met?	<u>'</u>	Y	'		Y	Y			IOW IIOIII Gwilt Greek, water able drops below 12 to all majority of the growing			
Groundwater Gauge REF-E	· · · ·											
Consecutive days within range	123'	33	'		22	19			Very dry after the end of 2012 and into the 2013 dormant season. Water table begins to recharge			
% of growing season	123	13.69%			9.13%	7.88%			in February, but does not occur in the upper surface until late Hebruary. water level drops back below 24" by May, and only beaks above 12" a few more times in June and July before dropping			
Criteria met?	l'	Y	「 <u></u> 」	「 <u></u> 」	Y	Y	Г <u></u>	Γ	remaining below 12" from August through the end of the growing season.			
Groundwater Gauge REF-F	· · · · · · · · · · · · · · · · · · ·											
Consecutive days within range	4001	34	27	39	23	28			Very dry after the end of 2012. Water table peaks multiple times above the ground surface, but does not remain above 12° for multiple days until mid-March and early-April. The water table flucuates in correlation with high rainfall events in June and July, before trending below 12° into early August. The well failed in early August, so no data was recorded from August to end of growing season.			
% of growing season	123	14.11%	11.20%	16.18%	9.54%	11.62%						
Criteria met?	<u> </u>	Y	Y	Y	Y	Y						
Average reference hydroperiod		36	29	43	15	36						
Consecutive number of days needed to meet the 50% deviation success criteria		18	15	22	8	18						
1- The Army Corps of Engineers states that th 2- The growing season for the site is 241 day 3- The minimum success criteria states that t	he range is within 12 ir /s long. the water table must br	iches of the solution of the second s	he ground	d surface E range fi	or at leas	t 5% (12 i	days)					

of the growing season consecutively. * Ground elevations recorded using county topographic GIS data.

Table 13b. Restoration Groundwater Gauge Summary Moore Property/725									
	MY1	MY2	MY3	MY4	MY5				
-	Ground Elevation*	2011	2012	2013	2014	2015	Notes		
Percentage of monitoring gauges with criteria met		50.00%	68.75%	68.75%					
Groundwater Gauge B1	· · · · · ·								
Consecutive days within range ¹	124 1'	68	89	174			Gauge located in wet swale that receives runoff from upslope property and roadside drainage.		
% of growing season ²	127.1	28.22%	36.93%	72.2%		<u> </u>	the surface in response to storm events during the growing season. Periods of low rainfall		
Criteria met ³ ?	 '	Y	Y	Y		i	show a draw down in the water table.		
Consecutive days within range	1 '	50	27	39			Water level within 12" of the surface at the end of the dormant season and the early growing		
% of growing season	124.0'	20.75%	11.20%	16.2%	<u>├</u> ──-		season, but is drawn down below 12" in May. The water table level correlates with rainfall		
Criteria met?	1	Y	Y	Y			events through August, but is below the upper 12 incres for the remainder of the 2013 growing season.		
Groundwater Gauge C2	ļ'								
Consecutive days within range	124.5'	47	28	91	ļ		Water levels are sustained above the ground surface during the dormant season in the beginning of 2013 and into the spring, only drawing down for short periods in April and May.		
% of growing season Criteria met?	1	19.50% Y	11.0270 Y	31.0% Y	├─── ┦		oognining of 2012 and and an		
Groundwater Gauge D2	j,		· ·	· ·					
Consecutive days within range	125.7'	0	1	5			Located near the wetland boundary along the upland ridge. Water levels are within the upper 24" during the growing season and peak in response to rainfall events, but does not occur		
% of growing season		0.00%	0.41%	2.1%	──┦		within the upper 12 inches until high rainfall events in June and July.		
Criteria met?	 '	N/A	N	N		l			
Groundwater Gauge E2	1 '	0	1	7	,		The water level at E2 responds quickly to rainfall events, and multiple peaks above 12" are		
	124.8'	0.00%	0.11%	2.0%	├ ───┦		recorded through the dormant season and into the spring of 2013. High rainfall events in June		
% of growing season	1 '	0.00%	0.4170 N	2.970 N	├ ───┦		water table was drawn down below monitoring depth in late August.		
Groundwater Gauge F2	<u> </u>	IN/A	IN	IN					
Consecutive days within range	124.2'	4	6	2			Gage F2 indicated proper monitoring and data download through 2013, however data was not		
% of growing season	127.2	1.66%	2.49%	0.8%	\square		recorded through 2013 due to gage tailure. Gage was replaced in August 2013, and snows water level trends at F2 are responsive to rainfall events.		
Groundwater Gauge A3	ł'	IN	IN	IN					
Consecutive days within range	123.8	103	93	231			Water levels sustained above the ground surface for the entire year.		
% of growing season	120.0	42.74%	38.59%	95.9%					
Criteria met? Groundwater Gauge B3	 '	Ŷ	Ŷ	Ŷ					
Consecutive days within range	102 7	45	21	25			Water level at gage B3 is responsive to rainfall events, with peaks recorded at or above the		
% of growing season	123.7	18.67%	8.71%	10.4%			ground surface frequently throughout the growing season. B3 indicates significant draw down during the growing season, with the water table dropping below 12" multiple times.		
Criteria met?	{'	Y	Υ	<u> </u>					
Consecutive days within range	1010	20	23	42	1		Water level is at or above the ground surface through mid-April, with peaks occuring in		
% of growing season	124.6	8.30%	9.54%	17.4%			response to rainfall. Water table draw down occurs during periods of low rainfall.		
Criteria met?	 '	N	ΓY	<u> </u>		<u> </u>			
Consecutive days within range	100.01	75	82	178	, ,		Water level is above the ground surface throughout the growing season except for a draw down		
% of growing season	123.0	31.12%	34.02%	73.9%			point in late-May and another in late-September.		
Criteria met?	{'	Y	Υ	<u> </u>					
Consecutive days within range		20	8	10	,		Gage C4 is very prone to flucuations in water table level based on rainfall events.		
% of growing season	124.3'	8.30%	3.32%	4.1%					
Criteria met?	 '	N	Υ	N					
Consecutive davs within range	100.01	75	92	232	1 1		Water levels sustained above the ground surface for the entire growing season except for a		
% of growing season	123.3'	31.12%	38.17%	96.3%			brief period in late September.		
Criteria met?	{'	Y	Υ	<u> </u>					
Groundwater Gauge ⊑4 Consecutive days within range	1	4	3	8	r		The water table at gage F4 was below monitoring depth through the beginning of 2013, and		
% of growing season	124.8'	1.66%	1.24%	3.3%			apperas to be highly reactive to rainfall events.		
Criteria met?	 '	N	N	N					
Consecutive days within range	(4	1	18	,		Located on the wetland fringe, with water levels below the monitoring depth for most of the		
% of growing season	124.8'	1.66%	0.41%	7.5%			year.		
Criteria met?	 '	N	N	Y					
Groundwater Gauge G4 Consecutive days within range	1 '	11	8	25	r		Gauge G4 is heavily influenced by rainfall levels, and a significant drawn down in water table		
% of growing season	123.5'	4.56%	3.32%	10.4%			depth was noted during April and May, but levels peaked above the surface through June and		
Criteria met?	 '	N	Y	Y			July with high raintail events.		
Groundwater Gauge B5	4 '	6	26	66	,		Water levels sustained near the ground surface for most of the year excent for brief periods		
% of growing season	123.4'	2.49%	10.79%	27.4%			during the growing season. Peaks were noted during June and July where the water level was		
Criteria met?		N	Y	Y			maintained above the ground surface.		
1- The Army Corps of Engineers states that t	the range is within 12 in	nches of	the grour	nd surface	1				
2- The growing season for the site is 241 day	ys iong.								

2- The growing season for the site is 2+1 bays long.
 3- For year's one (1) through three (3), minimum successful wetland hydrology is defined as less than or equal to 50% deviation in sustained water table levels near the surface compared to the reference wetlands (see Table 10a).
 * Ground elevations recorded by KHA using a Trimble VRS unit. Elevations are not certified by a professional surveyor.

Kimley-Horn and Associates, Inc.

